

ADDING SOUNDS TO SOUNDMINER – A SYSTEM BY TIM NIELSEN & JUSTIN DRURY

THE FILENAME CONVENTION

This system uses a very specific four or five part filename, that if adhered to, allows automated
scripts in Soundminer, which utilize a lookup table _facilitylookup.lua and a category list
_categorylist.csv, to automatically parse out information from the filename into various fields in
Soundminer.

The filename requires at least four parts, but may include five, but each block must be
separated by an _ and no other _s must be used. The _ is used to separate the blocks as
follows:

CatID_FXName_ShortID_Source_UserData

CatID = Abbreviated Category / Subcategory (defined by the _categorylist.csv file)
FXName = Brief Description (under 25 characters preferably)
ShortID = Sound Designer's Initials (matched using _facilitylookups.lua file)
Source = Abbreviated Show Title (matched using _facilitylookups.lua file)
UserData = A User defined space, often used for ID or Number, usually used for

guaranteeing that the Filename is 100% unique… or storing things such as
microphone type, location, etc.

For example:

BGPub_Busy Interior Restaurant Bar Walla Evening 01_TN_DORY_1024.wav

Is a valid filename because they contain all five parts separated by _s

Adhering to this filename structure allows the use of ‘scripts’ within Soundminer to
automatically fill in the most commonly used fields. There are instructions at the end of this
document explaining how to use the scripts to help you in adding Metadata to your records.

The CatID represents both the Category and SubCategory as defined in the file
_categorylist.csv This list is customizable. It is based by default on the Universal Sound
Category List made by Tim Nielsen and available as an Excel spreadsheet as well. This list
contains three main columns, Category, SubCategory, and CatID, which is an abbreviated
tag that contains info for both the Category and SubCategory:

An example is shown below:

The _categorylist.csv file also may contain other fields, such as the foreign translation lists,
and also contains an ‘explanations’ column that has no effect in Soundminer, but is meant to
help clarify some fields that might be confusing. Again, more on the using of this table and the
scripts at the end of this document.

The next chunk, what we’re calling FXName is what will become the FXName field in
Soundminer. The goal is to give a brief description of the sound. Around 25 characters is
usually ideal for the length of this field. It’s important that for the scripts to work properly, that
FXName be ‘TitleCased’ if you are not using spaces in this block. In other words, each new
word receives a Capital at the beginning. So in the above example:

BGPub_BusyInteriorRestaurantBarWallaEvening01_TN_DORY_1024.wav

The FX Name would end up BUSY INTERIOR RESTAURANT BAR WALLA EVENING 01

But:

BGPub_Busyinteriorrestaurantbarwallaevening01_TN_DORY_1024.wav

Would generated the FX name: Busyinteriorrestaurantbarwallaevening01, which is not ideal.

If separating words with spaces, this rule doesn’t apply.

ShortID shows you who recorded or designed the sound. These will be stored in the
_facilitylookups.lua file, You will need to manually modify the _facilitylookup.lua file to add
matches here. See the end of this document for modifications to the file.

If the script makes a match here, it will automatically fill in the DESIGNER field with the match.

Source holds the agreed upon initials or code for your show or project. This is also stored in
_facilitylookups.lua, and you can enter in your own abbreviations and full show or project
name. If the script finds a match here, it will parse out into the SHOW field.

A few quick notes about filenames:

- There should be three or four _ in the filename, as they separate the various parts of the
name for the scripts to work properly. Please do not use additional underscores. And
the first four chunks of data must be CatID_FXName_ShortID_Source… the last _ and
UserData is optional. The scripts will ignore this last chunk of data. You could easily
build a workflow to take this piece of information and place in a designated field. We
may look at modifying the scripts to do this later too.

- If you need to number sound effects, please do it as the last part of the FXName part of
the filename. For example, if you have four versions of the example above, they should
be named:

BGPub_BusyInteriorRestaurantBarWallaEvening01_TN_DORY_1024.wav
BGPub_BusyInteriorRestaurantBarWallaEvening02_TN_DORY_1025.wav
BGPub_BusyInteriorRestaurantBarWallaEvening03_TN_DORY_1026.wav
BGPub_BusyInteriorRestaurantBarWallaEvening04_TN_DORY_1027.wav

USING THE SCRIPTS TO PARSE INFORMATION FROM THE FILENAME

Assuming you have named your filename strictly according to the instructions above,
Soundminer has a powerful feature in the form of .lua scripts, to assist you in adding Metadata
to your records.

Scripts are accessed by right clicking a file, or group of files, and choosing the script you’d like
from the contextual menu (the contents of your script folder may vary from below):

There are four AutoExpand scripts that will be useful to you.
AutoExpand CatID, AutoExpand CatID from Filename, and AutoExpand Filename, and
AutoExpand from Category SubCategory

These scripts work in conjunction with the lookup table and category list behind the scenes
(_facilitylookups.lua and _categorylist.csv), to break apart the filename, and comparing those
pieces to the lookup table, to automatically fill in certain fields in Soundminer.

AutoExpand CatID from Filename takes the filename, which remember is in the following
format:

BGPub_BusyInteriorRestaurantBarWallaEvening01_TN_DORY_1024.wav

…and then looks at only the information up to the first _.

It compares this to the _categorylist.csv file, and if it finds a match, it will automatically fill in
several fields.

In the example above, it will see the BGPub_, and comparing that to the lookup table, it will set
the following fields accordingly:

 Category: willl be set to AMBIENCE
 SubCategory: will be set to PUBLIC
 CategoryFull: will be set to AMBIENCE-PUBLIC
 CatID: will be set to BGPub

If the AutoExpand CatID from Filename fails to find a match, it will return an error. This is an
indicator that the CatID at the beginning of your file is invalid, and not a match to a designated
Category / Subcategory pair. So it works great as a final check before files are committed to
your library.

AutoExpand CatID is the lightest of the scripts. It takes the CatID, if present, matches it to the
category list, and fills in Category, SubCategory and CategoryFull. It accomplishes the same
thing as AutoExpand CatID from Filename but only works once the CatID is already filled in. It
does not look to the actual filename to expand.

The AutoExpand Filename script includes the CatID script, but also sets additional fields based
on the filename. So again on our example file

BGPub_BusyInteriorRestaurantBarWallaEvening01_TN_DORY_1024.wav

Running it will break the filename apart and fill the following fields:

Category: will be set to AMBIENCE
 SubCategory: will be set to PUBLIC

CategoryFull: will be set to AMBIENCE-PUBLIC
 CatID: will be set to BGPub

FXName: will be built by auto-splitting on capitalizing (or spaces), then UPPERCASED
and become: BUSY INTERIOR RESTAURANT BAR WALLA EVENING 01

 Show: will match in the lookup table if it can and be set, in this case Tim Nielsen
 Designer: will match in the lookup table if it can and be set, in this case Finding Dory

Either script will error if it cannot find a proper match for the CatID. This is to ensure that all
files at least have the Category / SubCategory set correctly. So for example, if we had called
our file:

BgPub_BusyInteriorRestaurantBarWallaEvening01_DSNGER_SHOW_1024.wav or
BGPublc_BusyInteriorRestaurantBarWallaEvening01_DSNGER_SHOW_1024.wav

… either case will fail, because those CatIDs do not match anything in the _categorylist.csv

The AutoExpand Filename will not throw an error if it cannot find a match for ShortID
(Designer) or Source (Show). In these cases, it will simply leave those fields blank. This is an
indicator that the initials you used in the filename don’t match the lookup table. The UserData
optional chunk at the end is simply ignored as well by either script.

You could however fairly easily use a workflow and RegEx or some other method to break out
this final part and store in the field of your choosing, for example, to Notes or Microphone, or
somewhere fitting whatever you choose to store in the this chunk.

The AutoExpand Filename WILL throw an error, or get mightily confused, if it cannot
successfully break apart the filename into the expected four or five parts. This usually occurs
because of extra instances of the _, or lack thereof, which confuse the script. So in the
following examples, the script will fail, because it cannot successfully figure out which parts of
the filename correspond to its expectation:

BGPub_Busy_Interior_Restaurant_Bar_Walla_Evening01_DSNGER_SHOW_1024.wav
BGPubBusyInteriorRestaurantBarWallaEvening01DSNGER_SHOW1024.wav
BGPub_BusyInteriorRestaurantBarWallaEvening_01_DSNGER_SHOW_1024.wav

In all of these cases the script will fail. In the second case it will also throw an error because
the CatID is also invalid (Because it is missing the _ immediately after the CatID.

If the script succeeds, it will fill in Category, SubCategory, CategoryFull, CatID, FXName,
Designer and Show. Of the commonly viewed fields, this would leave only Description and
Library to be added manually.

So in this case:

Becomes:

The last script, AutoExpand from Category SubCategory, will basically do a reverse lookup to
find the CatID It will compare Category and SubCategory, and if it finds an exact match, it will
fill in the corresponding CatID.

Modifying the Category List

The category list is stored in the file called _categorylist.csv, stored in the following path:

~/Library/Application Support/SoundminerV5/_categorylist.csv

On launch, if this file doesn’t yet exist, Soundminer will create it with the default Universal
Category List that has recently been updated. If this files does exist, but hasn’t been modified
by the user, SM will update it to the latest version. However if you have gone in and modified
the list manually, on launch, Soundminer will detect this and not overwrite the file.

It is a standard .csv (comma separated value) file that can be opened by a variety of programs,
including Microsoft Excel (although beware that by default opening it in Excel will not preserve
the special characters used in many foreign translations). Apple’s PAGES seems to preserve
the Unicode characters better than Excel.

The first three columns that must exist, Category, SubCategory and CatID.

Once created, it will look this:

The first three columns are the most crucial, and must be called Category, SubCategory and
CatID (they are case sensitive). These define the ‘Category List’ that Soundminer will use
internally for many of the functions of choosing and filling in fields. You should keep them in
this order too.

The column called Explanations, because it doesn’t match any field in Soundminer, is simply
ignored. It’s use here is to help explain some of the decisions made, and help define some of
the more obscure categories. You could also enter your own notes here.

The rest of the columns are the various language translations.

There is also an Excel document available that contains the same information, but with some
color coding to make it easier to find information, It looks like this:

If you chose to modify this list, you would simply change the data in the _categorylist.csv file
(and if you want in your local copy of the Excel sheet as well if you want).

For example, you might decide that you don’t like the UPPERCASE Category and
SubCategory style. You could easily TitleCase it, or lowercase it. You could also modify the
SubCategory names to be plural if you like, as some people have commented, so ANIMALS-
HORSES instead of ANIMALS-HORSE.

What we would emplore you to consider, is to leave the CatID and not modify it. This is the
potential key to making this list Universal. If that CatID exists and everyone agrees to use it,
when an incoming file comes in that has that key piece of information, you’ll be able to use it to
split out to your Category and SubCategory pair, even if you’ve changed them.

It is also possible to add columns to this document. If any column’s name at the top matched a
valid defined field in Soundminer, that information will copy to the matched field when the
AutoExpand scripts are run.

For example in the following screen grab, I’ve added a column called ‘Library’ and entered
“Tim Nielsen FX” into every field in the column.

The effect of this is this: If any lookup matches a CatID, in addition to parsing out Category
and SubCategory, it will also parse whatever other columns match fields. In this case, if there
is any match, “Tim Nielsen FX” will be placed in the Library field in Soundminer.

Modifying the Facility Lookup

The file _facilitylookups.lua contains the ‘Lookup Table’. While categories are defined in the
_categorylist.csv, this file is where you will enter custom Designer and Show lookup data. This
file is located at the following path:

~/Library/Application Support/SoundminerV5/Scripts/_facilitylookups.lua

This file is a .lua script and at first glance may look confusing. But we are only interested in two
distinct chunks right at the top:

The –- Designer Field Lookup and –- Show Lookup are where you can define your own
matches for the AutoExpand Filename script. In this case, I want to add my own initials, TN
and I’ll add one show, Finding Dory. So by simply adding these entries into that lines as
follows, I will have added these two pieces of information:

Now when the AutoExpand Filename script runs, when it gets to the ShortID Chunk and finds
TN there, it will query the lookup table, find a match, and fill in “Tim Nielsen” into the Designer
field.

Likewise, when it breaks out the fourth part of the filename, the Source chunk, it will also
query the table, find DORY as a match, and fill in “Finding Dory” into the Show field.

Syntax in a .lua script is very important, so take care account of what you’re doing in here, be
careful of commas and quotes, and follow the example above clearly.

